

от 1,5 до 5 ГГц

ФУНКЦИОНАЛЬНАЯ СХЕМА

Этап жизненного цикла: **экспериментальный образец. Аналоги:** BM851, MDA4-752H+, HMC551, HMC552, HMC215, HMC615, HMC915.

КРАТКОЕ ОПИСАНИЕ

К1324ПС9АУ1 - СВЧ МИС широкополосного двойного балансного смесителя с усилителем гетеродина и усилителем промежуточной частоты. МИС предназначена для работы в диапазоне частот от 1,5 до 5 ГГц с напряжением питания 3,3 В или 5 В.

Интегрированные усилители и смеситель не зависимы друг от друга и коммутируются внешними цепями. Это позволяет устанавливать цепи фильтрации между каждым блоком, а также исключать усилитель ПЧ из тракта для включения смесителя в режиме преобразования частоты вверх.

МИС выполнена в герметичном металлокерамическом корпусе CQFN24 4 мм x 4 мм.

ПРИМЕНЕНИЕ

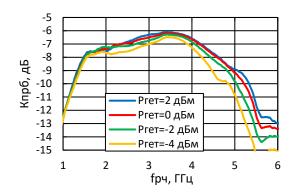
- Радиосвязь
- Радионавигация
- Радиолокация
- Спутниковая связь
- Измерительное оборудование

Основные параметры смесителя при T= 25 °C

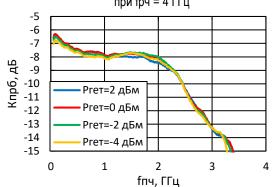
Параметр	Символ	Режим	Мин.	Тип.	Макс.	Ед. измерения
Диапазон частот РЧ	ΔF _{рч}	f _{пч} = 100 МГц, Р _{рч} = 0 дБм U _{гет} = 3,3/5 В		1,55		ГГц
Диапазон частот ПЧ	ΔF_{n_4}	f _{pч} = 4 ГГц, Р _{рч} = 0 дБм U _{гет} = 3,3/5 В		02,3		ГГц
Входная мощность при 1 дБ компрессии	Р _{вх1дБ}	P _{гет} = 0 дБм, U _{гет} = 3,3/5 В	10	10	13	дБм
Входная мощность при 1 дБ компрессии*	Р _{вх1дБ}	P _{гет} = 0 дБм, U _{гет} = 5 B,U _{пч} = 5 B	8	9	10	дБм
Коэффициент преобразования	Кпрб	Р _{рч} = 0 дБм, Р _{гет} = 0 дБм U _{гет} = 3,3/5 В	-11	-7	-6	дБ
Коэффициент преобразования*	Кпрб	P _{рч} = 0 дБм, P _{гет} = 0 дБм U _{гет} = 5 B,U _{пч} = 5 B	10	14	12	дБ
Изоляция ГЕТ-ПЧ	ISO _{гет-пч}	Р _{рч} = 0 дБм , Р _{гет} = 0 дБм , U _{гет} = 3,3/5 В		17		дБ
Изоляция ГЕТ-РЧ	ISO _{гет-рч}	$P_{pq} = 0$ дБм , $P_{ret} = 0$ дБм , $U_{ret} = 3,3$ В		25		дБ
Изоляция ГЕТ-РЧ	ISO _{гет-рч}	Р _{рч} = 0 дБм , Р _{гет} = 0 дБм , U _{гет} = 5 В		40		дБ
Изоляция РЧ-ПЧ	ISO _{рч-пч}	Р _{рч} = 0 дБм ,Р _{гет} = 0 дБм , U _{гет} = 3,3/5 В		20		дБ
Точка пересечения интермодуляционных искажений третьего порядка по входу	IIP3	Р _{рч} = 0 дБм, Р _{гет} = 0 дБм , U _{гет} = 3,3 В	16	20	24	дБм
Точка пересечения интермодуляционных искажений третьего порядка по выходу*	OIP3	Р _{рч} = 0 дБм, Р _{гет} = 0 дБм U _{гет} = 5 В,U _{пч} = 5 В	22	27	30	дБм
Режимный ток усилителя гетеродина	Іргет	U _{гет} = 3,3 B		36		мА
Режимный ток усилителя гетеродина	Іргет	U _{гет} = 5 В		50		мА
Режимный ток усилителя ПЧ	Ірпч	U _{гет} = 5 В		80		мА

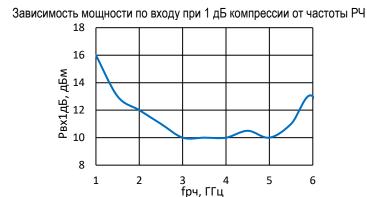
Примечание:

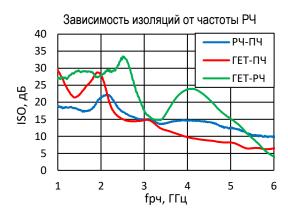
^{*}Режим с усилителем ПЧ и усилителем гетеродина

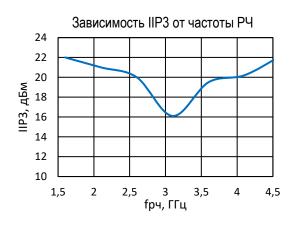


от 1,5 до 5 ГГц

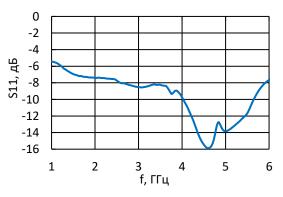

ПРЕОБРАЗОВАНИЕ ВНИЗ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА

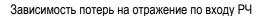

Режим измерения: Uгет=3,3 B, Iргет= 36 мA, fпч=100 МГц, Ррч= 0 дБм, Ргет=0 дБм, Т= 25 °С (если не указано иного)

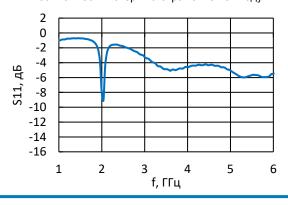

Зависимость коэффициента преобразования от частоты РЧ

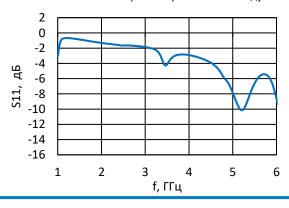


Зависимость коэффициента преобразования от частоты ПЧ при fpч = 4 ГГц








Зависимость потерь на отражение по входу гетеродина

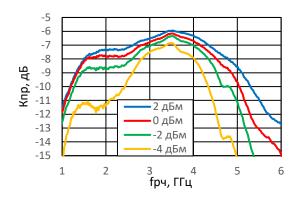
Зависимость потерь на отражение по входу ПЧ

ООО «ИПК «Электрон-Маш», 124365, г. Москва, Зеленоград корпус 1619, пом. 2 **Телефон:** +7 (495) 761-75-23, **Email:** info@electron-engine.ru

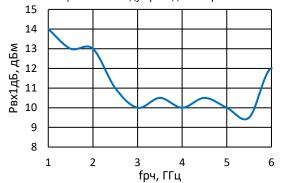
Bep A, 06. 2024

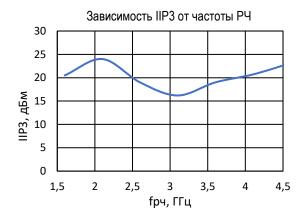
К1324ПС9АУ1

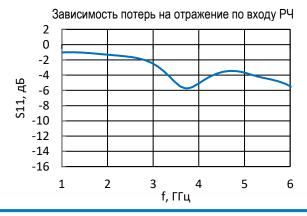
ДВОЙНОЙ БАЛАНСНЫЙ СМЕСИТЕЛЬ

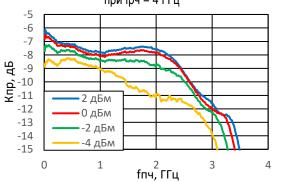

/МАШ

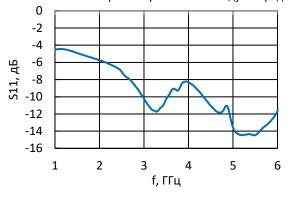
от 1,5 до 5 ГГц


ПРЕОБРАЗОВАНИЕ ВНИЗ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА


Режим измерения: Uгет=5 B, Іргет= 50 мA, fпч=100 МГц, Ррч= 0 дБм, Ргет=0 дБм, Т= 25 °С (если не указано иного)


Зависимость коэффициента преобразования от частоты РЧ


Зависимость мощности по входу при 1 дБ компрессии от частоты РЧ



Зависимость коэффициента преобразования от частоты ПЧ при fpч = 4 ГГц

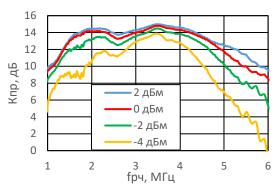
Зависимость потерь на отражение по входу гетеродина

ООО «ИПК «Электрон-Маш», 124365, г. Москва, Зеленоград корпус 1619, пом. 2 Телефон: +7 (495) 761-75-23, Email: info@electron-engine.ru

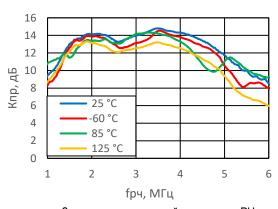
Bep A, 06. 2024

3

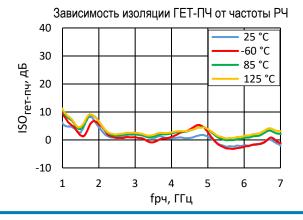
К1324ПС9АУ1

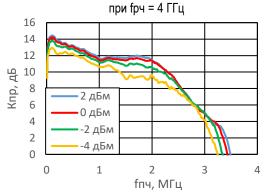

от 1,5 до 5 ГГц

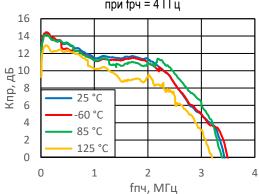
4


ПРЕОБРАЗОВАНИЕ ВНИЗ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА И ПЧ

Режим измерения: Uret=5 B, Uпч= 5B, Ipret=36 мA, Ipпч= 80 мA, fпч=100 МГц, Ppч= 0 дБм, Pret=0 дБм, T= $25 \, ^{\circ}$ С (если не указано иного)


Зависимость коэффициента преобразования от частоты РЧ


Зависимость изоляций от частоты РЧ

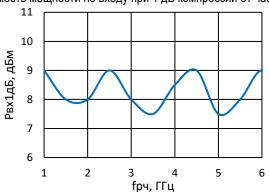


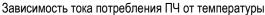
Зависимость коэффициента преобразования от частоты ПЧ

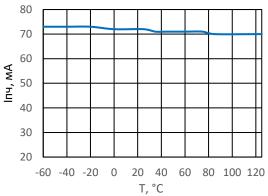
Зависимость коэффициента преобразования от частоты ПЧ при fpч = 4 ГГц

Зависимость изоляции РЧ-ПЧ от частоты РЧ 40 25 °C -60 °C 30 85 °C ISО_{рч-пч}, дБ 125 °C 20 10 0 -10 2 3 1 5 6 fрч, ГГц

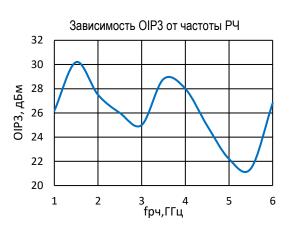
Bep A, 06. 2024

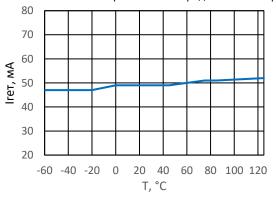



К1324ПС9АУ1


от 1,5 до 5 ГГц

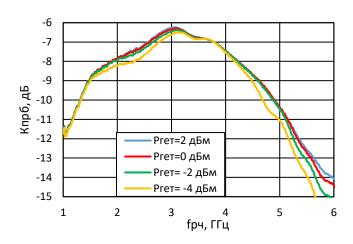

5

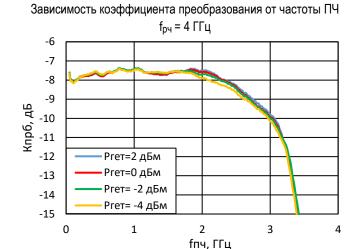

Зависимость мощности по входу при 1 дБ компрессии от частоты РЧ

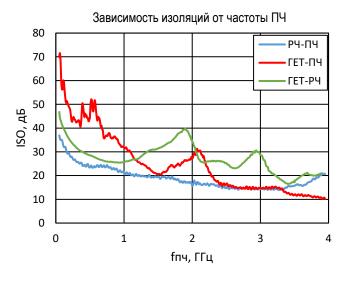


Зависимость тока потребления гетеродина от температуры

ООО «ИПК «Электрон-Маш», 124365, г. Москва, Зеленоград корпус 1619, пом. 2 Телефон: +7 (495) 761-75-23, Email: info@electron-engine.ru

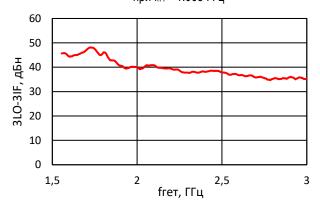

К1324ПС9АУ1


от 1,5 до 5 ГГц

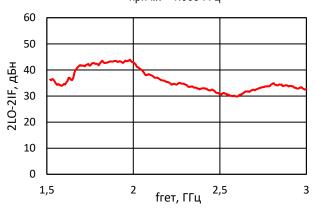

ПРЕОБРАЗОВАНИЕ ВВЕРХ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА

Режим измерения: Ureт= 3,3 B, Ipreт= 36 мА ,fпч= 50 МГц, Ррч=0 дБм, Preт=0 дБм, T= 25 °С (если не указано иного)

Зависимость коэффициента преобразования от частоты РЧ


6

Bep A, 06. 2024

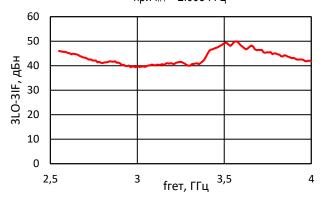


от 1,5 до 5 ГГц

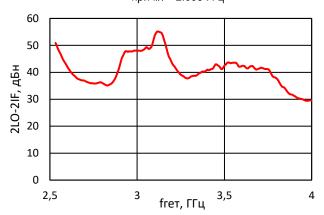
Относительный уровень сигнала на частоте $3F_{ret}$ - $3F_{nq}$ при f_{nq} = 1.005 $\Gamma\Gamma$ Ц

Относительный уровень сигнала на частоте $2F_{ret}$ - $2F_{nq}$ при f_{nq} = 1.005 ГГц

ТАБЛИЦЫ СПУРОВ


 $M\times IF+N\times LO$ (fny = 1005 MFų, fret = 1500 MFų, fpy = 2505 MFų)

			N×LO			
		0	1	2	3	4
	0	Χ	17	18	17	19
	1	13	0	12	12	21
M×IF	2	51	46	48	41	51
	3	47	41	61	45	58
	4	76	71	69	68	75


$M\times IF+N\times LO$ (fny = 1005 MFu, fret = 3000 MFu, fpy = 4005 MFu)

			N×LO				
		0	1	2	3	4	
	0	Χ	22	13	10	25	
	1	13	0	24	19	33	
M×IF	2	38	41	39	47	53	
	3	40	41	48	51	65	
	4	57	66	62	75	93	

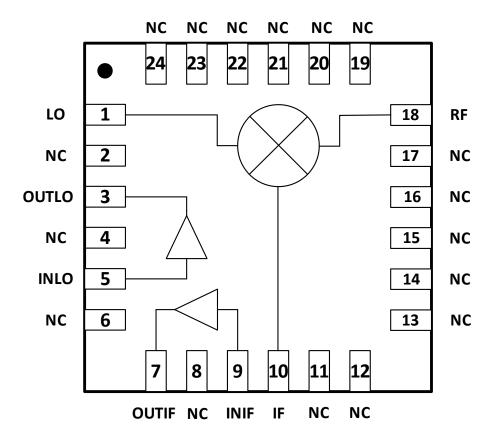
Относительный уровень сигнала на частоте $3F_{ret}$ - $3F_{nv}$ при f_{nv} = 2.005 ГГц

Относительный уровень сигнала на частоте $2F_{ret}$ - $2F_{nu}$ при f_{nu} = 2.005 ГГц

M×IF-N×LO (fпч = 1005 МГц , freт = 3000 МГц , fрч = 1995 МГц)

			N×LO			
		0	1	2	3	4
	0	Χ	21	12	9	24
	1	12	0	15	26	39
M×IF	2	37	41	35	34	38
	3	39	71	47	44	46
	4	56	60	59	66	63

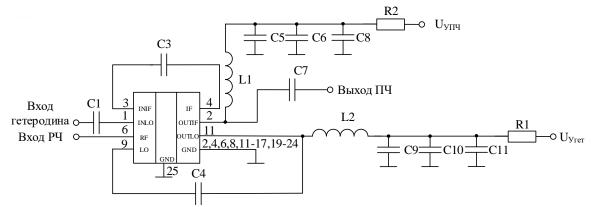
M×IF-N×LO


(fпч = 1005 MГц, frет = 5000 MГц, fрч = 3955 МГц)

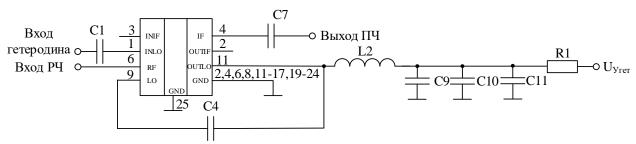
1114 - 1003 WI LE, ITET - 3000 WI LE, IP4 - 3333 WI LE						
			N×LO			
		0	1	2	3	4
	0	Χ	6	9	29	40
	1	10	0	16	49	64
M×IF	2	35	32	36	45	56
	3	42	41	47	54	82
	4	56	51	60	78	80

от 1,5 до 5 ГГц

ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ ВЫВОДОВ К1324ПС9АУ1

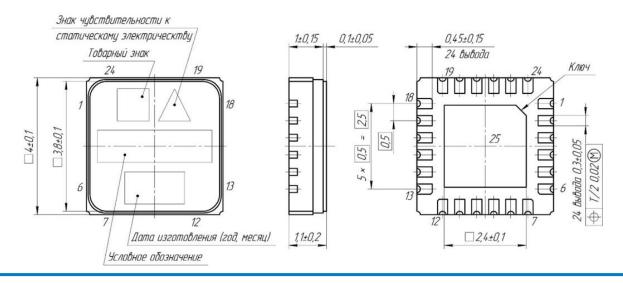


Номер вывода	Функциональное назначение	Обозначение вывода
1	Гетеродин	LO
2, 4, 6, 8 ,11-17, 19-24	Не задействован	NC
3	Выход усилителя гетеродина	OUTLO
5	Вход усилителя гетеродина	INLO
7	Выход усилителя ПЧ	OUTIF
9	Вход усилителя ПЧ	INIF
10	ПЧ	IF
18	рч	RF
25	Общий	GND



от 1,5 до 5 ГГц

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ К1324ПС9АУ1


Включение А – включение с усилителем ПЧ

Включение Б – включение без усилителя ПЧ

Компонент	Номинал
C1, C6	1 мкФ, 0603
C2, C7	100 нФ, 0402
C3, C8	100 пФ, 0402
C4, C5, C9, C10	10 нФ, 0402
R1 (Ureт= 5 B)	25 Ом, 0603
R1 (Uгет= 3,3 B)	0 Ом, 0603
R2	5,1 Ом, 0603
L1	100 нГн, 0603
L2	560 нГн, 0603

ГАБАРИТНЫЕ РАЗМЕРЫ КОРПУСА

ООО «ИПК «Электрон-Маш», 124365, г. Москва, Зеленоград корпус 1619, пом. 2 **Телефон:** +7 (495) 761-75-23, **Email:** info@electron-engine.ru

К1324ПС9АУ1

от 1,5 до 5 ГГц

10

Рекомендации по применению

МИС является чувствительной к качеству заземления, поэтому на печатной плате, для осуществления заземления, необходимо использовать сквозные металлизированные отверстия, расположенные в непосредственной близости от МИС, желательно непосредственно под контактными площадками заземления.

Если источник сигнала и/или нагрузка имеет постоянную составляющую напряжения, то необходимо применять внешние разделительные конденсаторы.

Для систем с высокими требованиями к линейности по iP3, рекомендуется исключать встроенный усилитель ПЧ из тракта и применять более высоколинейный внешний усилитель, например ШПУ K1324УB12У, ШПУ K1324УB70У.

Рекомендации по пайке

Монтаж МИС в аппаратуру производить, используя метод пайки, при котором распайку выводных площадок на плату проводят без дополнительного механического крепления:

- наносят паяльную пасту;
- пайку проводят оплавлением паяльной пасты с предварительным нагревом в месте пайки до температуры (220 \pm 30) °C (время воздействия не более 60 с) и последующим нагревом в месте пайки до температуры (230 \pm 5) °C (время воздействия не более 30 с);
- состав паяльной пасты (рекомендуемый) оловянносвинцовая с содержанием серебра Ag 2%.

Допускается проводить монтаж МИС в аппаратуру припоями ПОСК50-18 или ПОС-61 (ГОСТ 21931) паяльником в режиме:

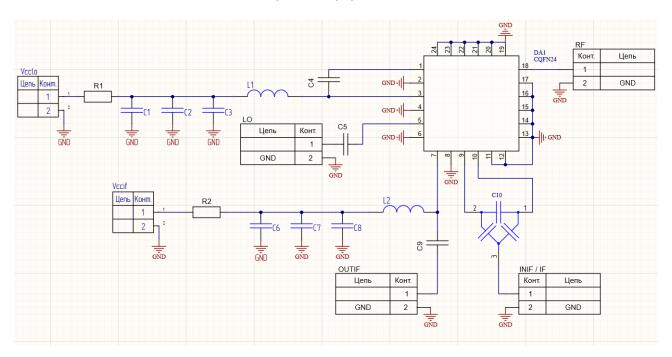
- температура жала паяльника должна быть не более 280 °C;
- время пайки каждого вывода должно быть не более 3 с;
- интервал между пайками соседних выводов должен быть не менее 3 с.

Монтаж МИС в аппаратуру проводить комбинированным методом, пайку основания корпуса рекомендуется проводить на плитке с использованием паяльной пасты, температура выбирается в соответствии с профилем пайки выбранного припоя (но не более 280 °C). Пайку выводных площадок следует проводить одножальным паяльником, припоями ПОСК50-18 или ПОС-61 (ГОСТ 21931) в режиме:

- температура жала паяльника должна быть не более 280 °C;
- время пайки каждого вывода должно быть не более 3 с;
- не допускать нагрев корпуса модулей до температуры, превышающей 150 °C

ПРЕДЕЛЬНЫЙ РЕЖИМ РАБОТЫ

Параметр, единица измерения	Значение / диапазон
Напряжение питания усилителя гетеродина (Uгет), В	Не более 7,0
Напряжение питания усилителя ПЧ (Uпч), В	Не более 7,0
Мощность на выводе РЧ и ПЧ (Р _{рч} / Р _{пч}), дБм:	не более 20
Мощность на входе усилителя гетеродина (Р _{гет.ус}), дБм:	не более 10
Диапазон рабочих температур, °С	-60+125


ООО «ИПК «Электрон-Маш», 124365, г. Москва, Зеленоград корпус 1619, пом. 2

Вер A, 06. 2024 Телефон: +7 (495) 761-75-23, Email: <u>info@electron-engine.ru</u>

от 1,5 до 5 ГГц

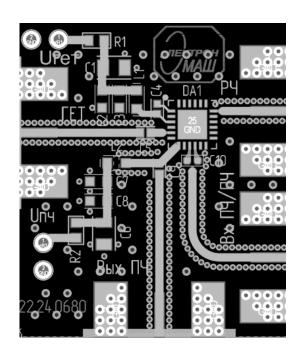
ДЕМОНСТРАЦИОННАЯ ОСНАСТКА ПП- К1324ПС9АУ1 СХЕМА ВКЛЮЧЕНИЯ

ТАБЛИЦА ЭЛЕМЕНТОВ И НОМИНАЛОВ

Элемент	Номинал	Корпус
DA1	ПС9	CQFN24
R1	0 Ом	0603
R2	5,1 Ом	0603
C1, C6	10 мкФ	0805
C2, C7	100 нФ	0603
C3, C8	100 пФ	0603
L1	100 нГн	0603
L2	560 нГн	0603
C4, C5, C9, C10	10 нФ	0402

Для работы в активном режиме с усилителем на входе гетеродина конденсатор C10 должен быть установлен в положение 1-3.

Для работы в активном режиме с усилителем на входе гетеродина и с усилителем на выходе ПЧ конденсатор С10 должен быть установлен в положение 1-2.


К1324ПС9АУ1

ДВОЙНОЙ БАЛАНСНЫЙ СМЕСИТЕЛЬ

от 1,5 до 5 ГГц

о 5 ГГц 12

ТОПОЛОГИЯ ПЕЧАТНОЙ ПЛАТЫ

MATEPИAЛ: Rogers + FR4 ТОЛЩИНА ПОДЛОЖКИ: 0,5 мм

К1324ПС9АУ1

ДВОЙНОЙ БАЛАНСНЫЙ СМЕСИТЕЛЬ

от 1,5 до 5 ГГц

13

СОДЕРЖАНИЕ

ФУНКЦИОНАЛЬНАЯ СХЕМА	
КРАТКОЕ ОПИСАНИЕ	1
АНАЛОГИ	1
ПРИМЕНЕНИЕ	1
ПРЕОБРАЗОВАНИЕ ВНИЗ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА	2
ПРЕОБРАЗОВАНИЕ ВНИЗ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА	3
ПРЕОБРАЗОВАНИЕ ВНИЗ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА И ПЧ	
ПРЕОБРАЗОВАНИЕ ВВЕРХ С УСИЛИТЕЛЕМ ГЕТЕРОДИНА	6
ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ ВЫВОДОВ К1324ПС9АУ1	
ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ К1324ПС9АУ1	9
ГАБАРИТНЫЕ РАЗМЕРЫ КОРПУСА	g
РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ	10
РЕКОМЕНДАЦИИ ПО ПАЙКЕ	10
ДЕМОНСТРАЦИОННАЯ ОСНАСТКА ПП- К1324ПС9АУ1	
 ТОПОПОГИЯ ПЕЧАТНОЙ ППАТЫ	12

история изменений

06/2024 – Вер.А: предварительные результаты.

Служба технической поддержки:

Телефон: +7 (495) 765-75-23

e-mail: support@electron-engine.ru

ООО «ИПК «Электрон-Маш», 124365, г. Москва, Зеленоград корпус 1619, пом. 2 **Телефон:** +7 (495) 761-75-23, **Email:** <u>info@electron-engine.ru</u>