

Функциональная схема

5 x 6 x 2 мм³

Применение

- Радары
- Системы связи
- Контрольно-измерительная аппаратура
- Спутниковая связь
- Радиоразведка

Этап жизненного цикла:

производство

Ближайший аналог

QPA1003P

Ключевые особенности

• Диапазон рабочих частот: 1,0 – 8,0 ГГц

• Рвых: 40 дБм (10 Вт)

• К.П.Д.: 30 %

 Коэффициент усиления в режиме большого сигнала: 25 дБ

 Коэффициент усиления в режиме малого сигнала: 31 дБ

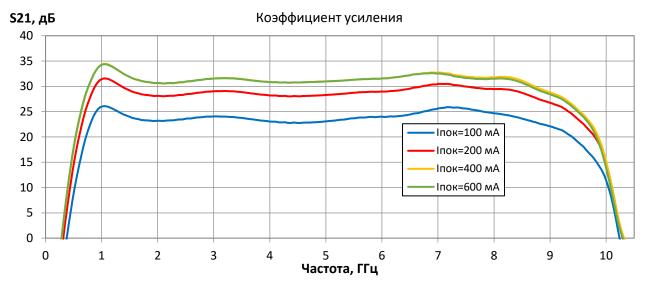
• Напряжение питания Uп = 28 В

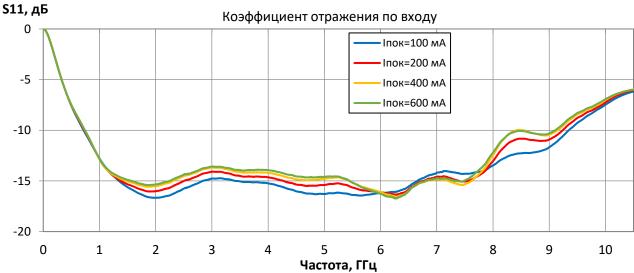
• Прямая замена QPA1003P

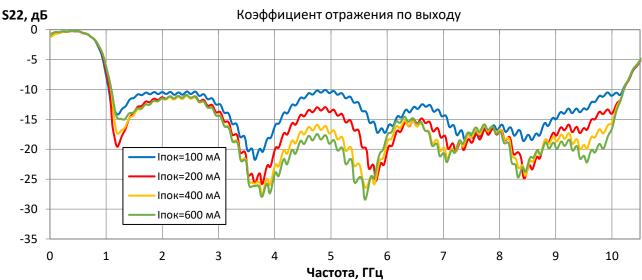
Краткое описание

іРА-64-МВ представляет собой усилитель мощности, работающий в диапазоне от 1,0 до 8,0 ГГц (возможно применение до 9 ГГц). Усилитель обеспечивает номинальную выходную мощность 10 Вт при К.П.Д. 30 %.

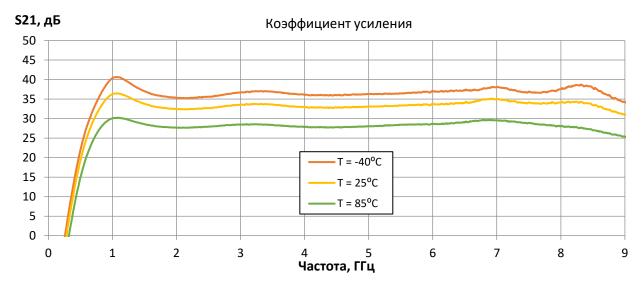
СВЧ вход и выход согласованы с линией передачи 50 Ом, а также в них интегрированы разделительные конденсаторы, что упрощает системную интеграцию.

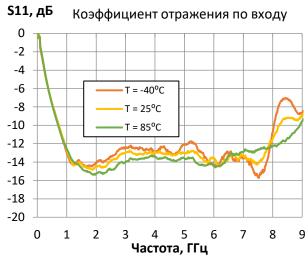

Микросхема поставляется в малогабаритном корпусе для поверхностного монтажа с эффективным теплоотводом и размерами $5.0 \times 6.0 \times 2.0 \text{ мм}^3$.

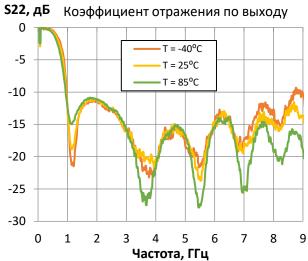

Основные параметры при T_A = +25°, Uп = 28 B, $I_{C_\Pi O K}$ = 0,60 A, t_{II} = 100 мкс, Q = 10


Параметр	Мин.	Типовое значение	Макс.	Единицы измерения
Диапазон частот		1,0 - 8,0		ГГц
Выходная мощность (Р _{вх} = 30 мВт)		10		Вт
Коэффициент полезного действия		35		%
Малосигнальный коэффициент усиления	32	31	34	дБ
Температурный коэффициент малосигнального усиления		-0,07		дБ/°С
КСВН по входу		1,5		ед.
КСВН по выходу		1,6		ед.

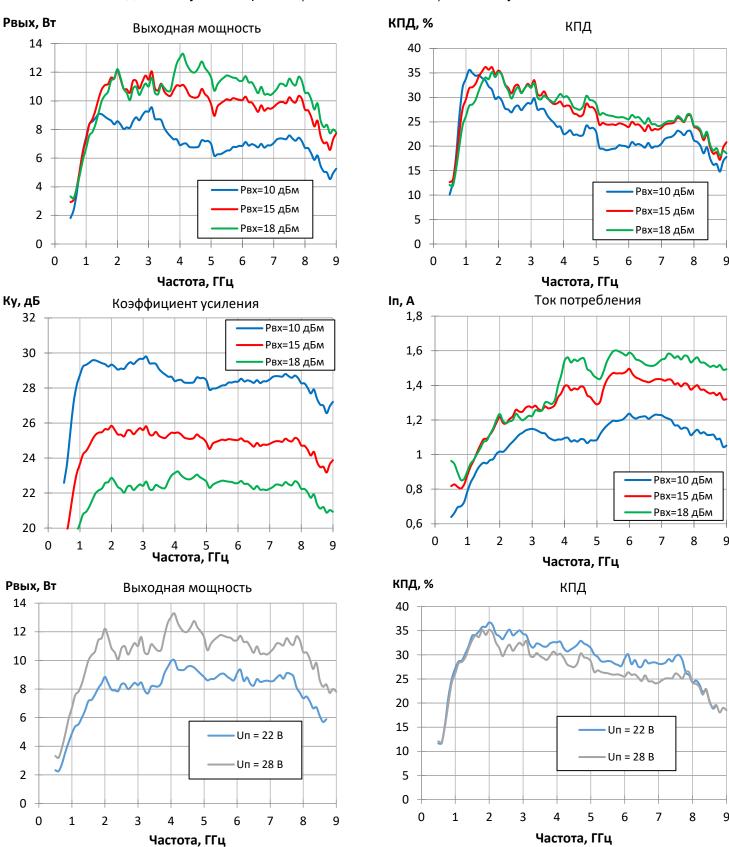
Измерение малосигнальных параметров. Режим измерения: $T_A = +25^\circ$, $U\pi = 28$ B, PBX = -20 дБм, непрерывный режим, если не указано иного.

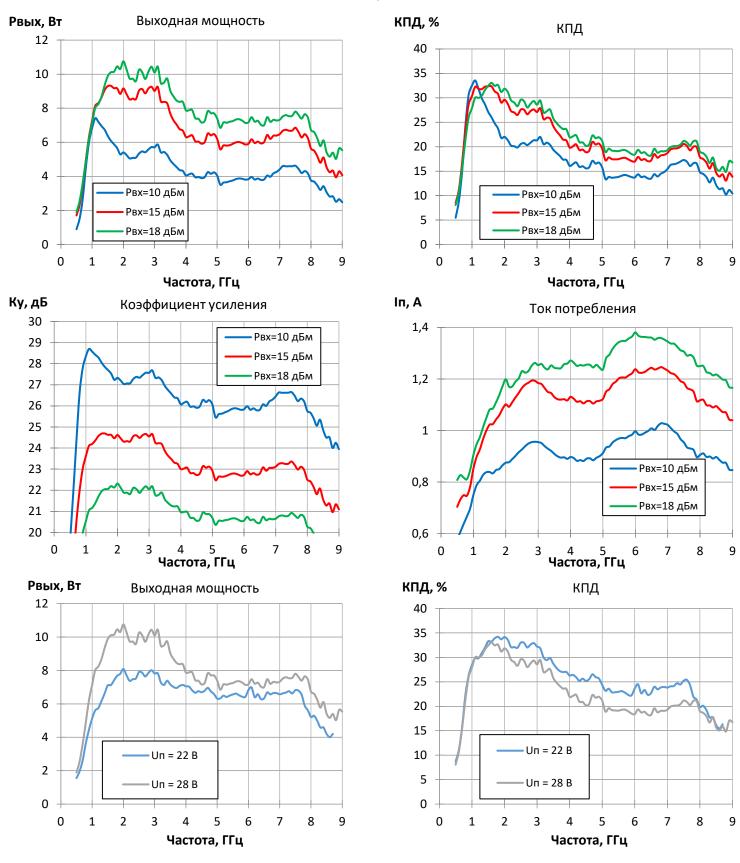




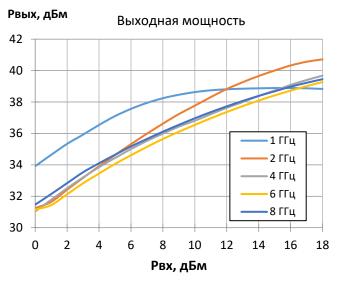


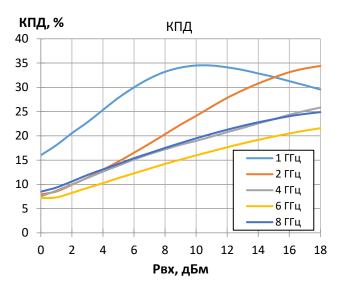
Измерение малосигнальных параметров. Режим измерения: $T_A = +25^\circ$, $U\pi = 28$ B, PBX = -20 дБм, непрерывный режим, если не указано иного.

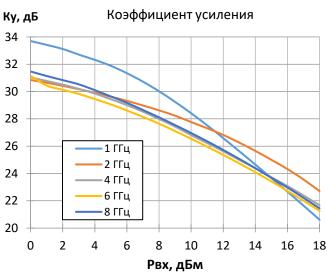


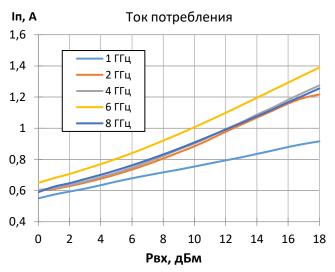


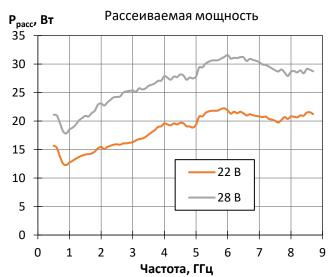
Измерения на большом сигнале в импульсном режиме. Режим измерения: T_A = +25°, U_Π = 28 B, $I_{\text{пок}}$ = 0,6 A, P_{BX} = 18 дБм, импульсный режим (t_{W} = 100 мкс, Q = 10), если не указано иного.

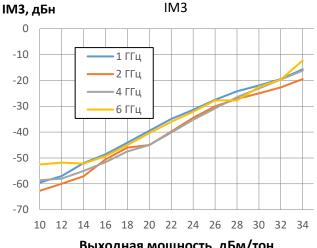


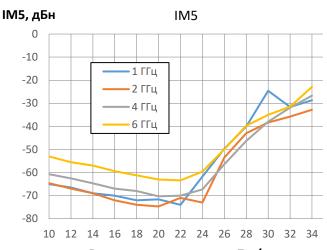

Измерения на большом сигнале в непрерывном режиме. Режим измерения: $T_A = +25^\circ$, $U_D = 28 \text{ B}$, $I_{\text{пок}} = 0.6 \text{ A}$, $P_{\text{BX}} = 18 \text{ дБм}$, непрерывный режим, если не указано иного

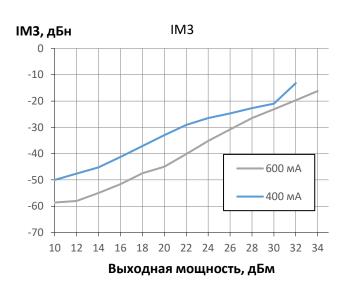


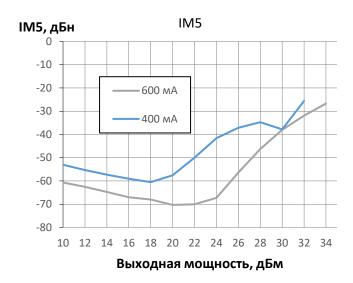


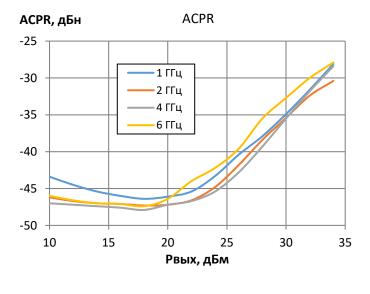

Измерения на большом сигнале в непрерывном режиме. Режим измерения: $T_A = +25^\circ$, $U_B = 28 \text{ B}$, $I_{\text{пок}} = 0.6 \text{ A}$, $P_{\text{BX}} = 18 \text{ дБм}$, непрерывный режим, если не указано иного

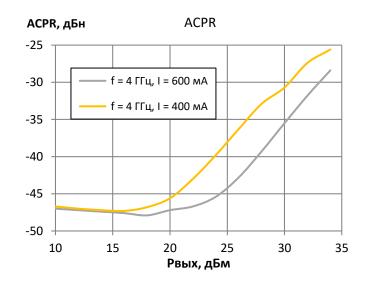





Измерения линейности. Режим измерения: $T_A = +25^\circ$, $U_B = 28 \text{ B}$, $I_{nok} = 0.6 \text{ A}$, если не указано иного, для ACPR: входной сигнал QAM16, полоса сигнала 3,84 МГц, соседний канал на отстройке 5 МГц, для IM3/IM5: двухтоновый входной сигнал, $\Delta f = 10$ МГц.




Выходная мощность, дБм/тон



Выходная мощность, дБм/тон

Тепловые характеристики

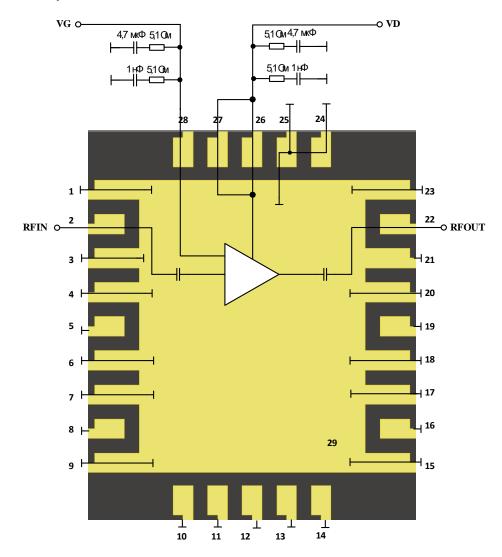
Параметр	Условия работы	Значен ие	Единица измерения
Температура перехода	$T_{\text{корп.}} = 56 ^{\circ}\text{C}, U_{\Pi} = 28 \text{B}, I_{\text{пок}} = 600 \text{MA}, \ P_{\text{pacc}} = 16,8 \text{BT}$	130	°C
Rt		4,4	°С/Вт
Rt _{пов}		2,1	°С/Вт
Температура перехода	$T_{\text{корп.}} = 65 ^{\circ}\text{C}, U_{\Pi} = 22 \text{B}, I_{\text{пок}} = 600 \text{мA},$	166	°C
Rt	$P_{pacc} = 21,9$ Вт, $f_{BX} = 6$ ГГц, $P_{BX} = 17$ дБм, $I_{\Pi} = 1,23$ А,	4,6	°С/Вт
Rt _{пов}	Р _{вых} = 5,2 Вт, непрерывный режим (НР)	2,6	°С/Вт
Температура перехода	$T_{\text{корп.}} = 80 ^{\circ}\text{C}, \ U_{\Pi} = 28 \text{B}, \ I_{\text{пок}} = 600 \text{мA},$	227	°C
Rt	$P_{pacc} = 30,4$ Вт, $f_{Bx} = 6$ ГГц, $P_{Bx} = 17$ дБм, $I_n = 1,3$ А,	4,6	°С/Вт
Rt _{пов}	Р _{вых} = 6 Вт, непрерывный режим (НР)	3,1	°С/Вт

¹Rt – тепловое сопротивление, полученное методом конечных элементов, откалиброванным по экспериментальным данным, полученным с тепловизора относительно нижней части корпуса; ²Rt_{пов} – тепловое сопротивление на основе данных с тепловизора, используется исключительно в качестве калибровочного значения.

Рекомендуемый режим

Параметр	Значение/ Диапазон
Напряжение питания (U _п)	28 B
Ток по цепи питания (І _{пок})	0,6 A
Напряжение смещения (U _{см})	−2,6 до −2,0 B

Предельный режим работы


пределене решини рассте.	
Параметр	Значение/ Диапазон
Напряжение питания (U _п)	32 B
Напряжение смещения (U _{CM})	–10 до 0 В
Рассеиваемая мощность	43 Вт
Входная мощность (Рвх), U _П = 28 B, 85 °C	23 дБм
Температура пайки	320°C
Температура хранения	-55 to 150°C

Информация по использованию

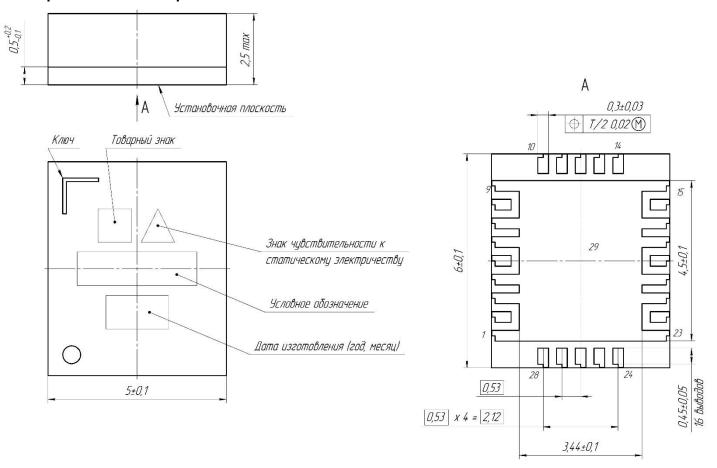

Включение	Выключение
1. Установить ограничения Іп до 2,0 А;	1. Отключить СВЧ сигнал
І _{см} до 5 мА	
2. Установить U _{CM} = – 5 В	2. Понизить U _{CM} до – 5 В
3. Установить U _П = + 28 В	3. Установить U _П = 0 В
4. Повышать напряжение U _{см} , пока I _п не будет	4. Отключить напряжение питания U _⊓
равен 600 мА	
5. Подать СВЧ сигнал	5. Отключить напряжение смещения U _{CM}

Схема включения микросхемы іРА-64-МВ

Габаритная схема микросхемы іРА-64-МВ

Назначение выводов

пазпачение выводов		
Номер площадки	Символ	Описание
1, 3, 4, 6, 7, 9, 15, 17, 18, 20, 21, 23-25, 29*	GND	Общий
2	RFIN	Вход СВЧ
5, 8, 10-14, 16, 19	NC	Свободный. Следует подключить к общему выводу
22	RFOUT	Выход СВЧ
26,27	VD	Напряжение стока
28	VG	Напряжение затвора
*Основание		

Демонстрационная плата

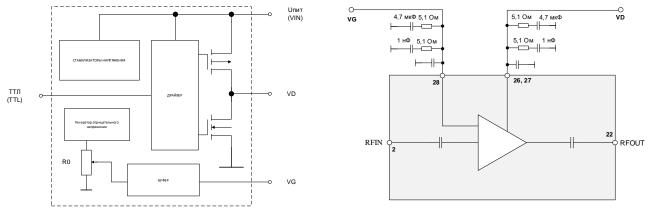
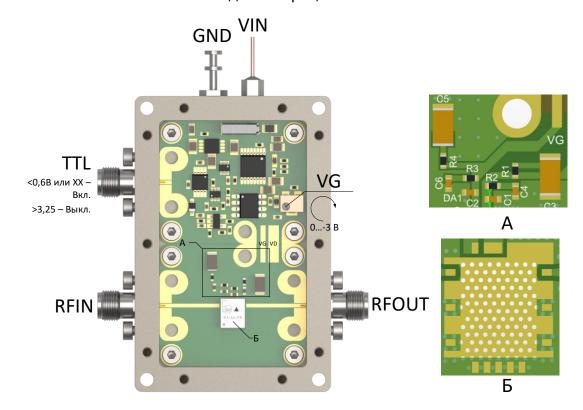
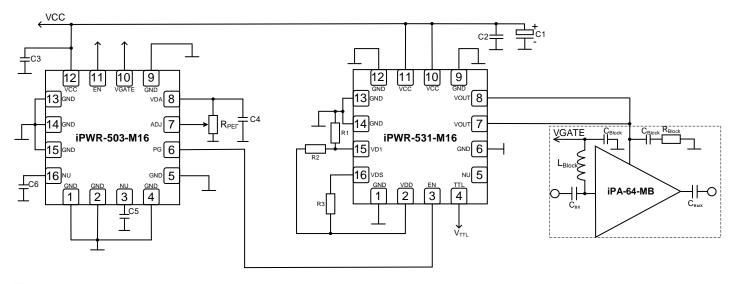



Схема демонстрационной платы

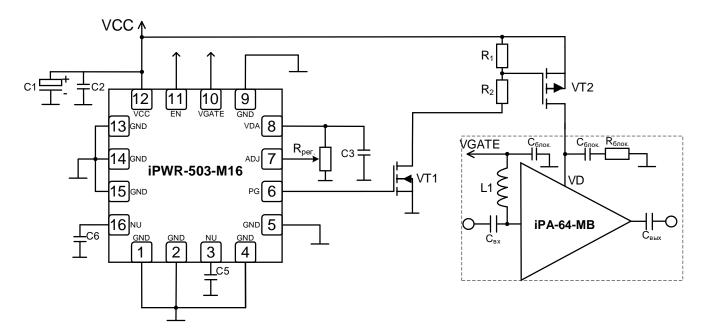
1. Материал СВЧ ПП – Rogers 4003С или аналог 254 мкм, основание – медь 1 мм. СВЧ ПП соединена с медным основанием с помощью листового припоя SAC305 толщиной 100 мкм


Перечень компонентов

Поз. обозначение	Значение	Наименование	Описание
C1, C2	_	Не устанавливается	
C3, C5	4,7 мкФ	GRM31CR71H475KA12L	4.7 μF ±10% 50V Ceramic Capacitor X7R 1206 (3216 Metric)
C4, C6	1000 пФ	GRM1555C1H102FA01D	Конденсатор керамический 1000 пФ ±1% 50B 0402
R1–R4	5,1 Ом	RC0402FR-075R1L	5.1 Ohms ±1% 0.063W, 1/16W Chip Resistor 0402 (1005 Metric)

Схема включения iPA-64-MB с контроллером питания iPWR-503-M16 и модулятором питания iPWR-531-M16

Данный вариант включения предусматривает работу СВЧ-усилителя в импульсном режиме с малой длительностью нарастания и спада импульсов питания (до 100 нс). Для работы требуется однополярное напряжение питание VCC =+ 28 В и управляющий ТТЛ-сигнал.



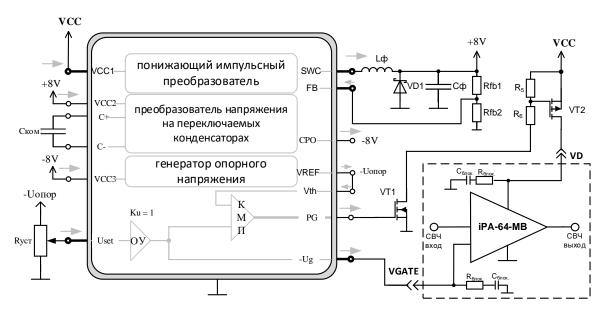
Перечень компоне	НТОВ		
Поз. обозначение	Значение	Наименование	Описание
C7	100 мкФ	AEK1010101M050R	100 мкФ±20% 50 В, конденсатор алюминиевый электролитический
C8, C9, C10	100 нФ	C0603C823K5RACTU	100 нФ±10% 50 В, конденсатор керамический 0603
R5, R6	10 кОм	AC0603FR-0710KL	10 кОм±1%, резистор 0603
R7	1,4 кОм	RC0603FR-071K4L	1,4 кОм±1%, резистор 0603
Radj	100 кОм	3314G-1-104E	Резистор подстроечный
Сблок	Соответствуют С3-С6		
Rблок	Соответствуют R1-R4		

Схема включения iPA-64-MB с контроллером питания iPWR-503-M16

Данный вариант включения обеспечивает непрерывный режим работы СВЧ-усилителя. iPWR- 503-M16 формирует отрицательное напряжение смещения и выполняет контроль подачи питающих напряжений на усилитель. Для работы схемы достаточно однополярного напряжения питания VCC =+ 28 B.

Перечень компонентов

Поз. обозначение	значение	Наименование	Описание	
			100 мкФ±20% 50 В,	
C1*	100 мкФ	AEK1010101M050R	конденсатор алюминиевый	
			электролитический	
C2, C3	100 нФ	C0603C823K5RACTU	100 нФ±10% 50 В, конденсатор	
02, 03	100 ΗΦ	C0003C023K3KAC10	керамический 0603	
C4, C5	1 мкФ	GRM188R71C105KA12D	1 мкФ±10% 16 В, конденсатор	
	ΓMKΦ	GRIVI100K7 TC 105KA12D	керамический 0603	
R _{per.}	100 кОм	3314G-1-104E	Резистор подстроечный	
R1*	820 Ом	RC1206FR-07820RL	820 Ом±1%, резистор 1206	
R2*	2,7 кОм	RC1206FR-072K7L	2,7 кОм±1%, резистор 1206	
VT1	-	КП509А9	N-канальный МОП транзистор	
VT2*	-	2ПЕ219А92	Р-канальный ДМОП транзистор	
L _{Block}				
$C_{Block}, C_{Bx}, C_{Bbix}$	Определяются параметрами СВЧ-усилителя мощности			
R _{Block}				


Выбор силового транзистора и номинал конденсатора С1 определяется выходной мощностью СВЧ-усилителя. R_1 и R_2 выбираются в соответствии с характеристиками Р-канального транзистора: $(VCC-U_{3M_{MAKC.VT2}})=12~\mathrm{B}>\frac{VCC*R_2}{R_1+R_2},$

$$(VCC - U_{3M_{\text{MAKC}},VT2}) = 12 \text{ B} > \frac{VCC * R_2}{R_1 + R_2},$$

Схема включения iPA-64-MB с контроллером питания iPWR-502-MO

Данный вариант включения обеспечивает непрерывный режим работы СВЧ-усилителя. iPWR- 502-MO формирует отрицательное напряжение смещения и выполняет контроль подачи питающих напряжений на усилитель. Для работы схемы достаточно однополярного напряжения питания VCC =+ 28 B.

Перечень компонентов

TTOPO TOTIO ROWITOTI	011100		
Поз.	Значение	Наименование	Описание
обозначение			
C7, C8	1000 пФ	GRM1555C1H102GA01D	1000 пФ±2% 50 В, конденсатор
			керамический 0402
$C_{\text{ком}}, C_{\phi}$	47 мкФ	RM31CR61E476ME44L	47 мкФ±20% 25 В, конденсатор
			керамический 1206
R5	12 кОм	RC0402FR-0712KL	12 кОм±1%, резистор 0402
R _{уст.}	100 кОм	3314G-1-104E	Резистор подстроечный
R5*	820 Ом	RC1206FR-07820RL	820 Ом±1%, резистор 1206
R6*	2,7 кОм	RC1206FR-072K7L	2,7 кОм±1%, резистор 1206
R _{fb1}	6,19 кОм	RC0402FR-076K19L	6,19 кОм±1%, резистор 0402
R _{fb2}	1,13 кОм	RC0402FR-071K13L	1,13 кОм±1%, резистор 0402
Lφ	-	VLS6045EX-101M	100 мкГн±20%, индуктивность
VD1	-	SS14	Диод Шоттки 1А 40В
VT1	-	КП509А9	N-канальный МОП транзистор
VT2*	-	2ПЕ219А92	Р-канальный ДМОП транзистор
Сблок	Соответствуют		
	C3-C6		
R _{блок}	Соответствуют		
	R1-R4		

Выбор силового транзистора определяется выходной мощностью СВЧ-усилителя. Для снижения тепловой нагрузки стоит выбирать транзистор с минимальным $R_{\text{си}}$.

R₅ и R₆ выбираются в соответствии с характеристиками Р-канального транзистора:

$$(VCC - U_{3M_{MAKC.VT2}}) = 12 > \frac{VCC*R_6}{R_5 + R_6},$$

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Не допускается использование микросхемы в режимах и условиях, отличных от указанных в ЛТВШ.434810.001ТУ.

Микросхемы обеспечивают параметры при эксплуатации в режимах, приведенных в 1.2 и ЛТВШ.434810.001ТУ.

Перед первым включением питающего напряжения необходимо убедиться, что величина напряжения соответствует указанной в этикетке на микросхему и произвести внешний осмотр. Запрещается присоединять и отсоединять микросхему от СВЧ-тракта при включенном питании.

Источник питания должен быть заземлен. При работе с микросхемой обязательно применение мер по защите микросхемы от статического электричества.

Микросхемы не предназначены для эксплуатации при повышенной влажности окружающей среды без предварительной зашиты.

Микросхемы предназначены для эксплуатации с применением мер защиты от внешних воздействующих факторов в составе аппаратуры.

Режим и условия монтажа (демонтажа) в аппаратуре – по ОСТ 11 073.063.

Монтаж микросхем аппаратуру производить, используя метод пайки, при котором распайку выводных площадок на плату проводят без дополнительного механического крепления: - наносят паяльную пасту; - пайку проводят оплавлением паяльной пасты, режим пайки в соответствии с рекомендованным производителем паяльной термопрофилем; состав паяльной (рекомендуемый) оловянно-свинцовая температурой плавления – не более 183 °C.

Микросхемы не допускается отмывать путем полного погружения в отмывочный раствор (спирт).

Последовательность включения и выключения микросхемы должны осуществляться строго по алгоритму, указанному в пункте «Информация по использованию»

РЕКОМЕНДАЦИИ ПО ПАЙКЕ

Режим и условия монтажа (демонтажа) в аппаратуре – по ОСТ 11 073.063 или ГОСТ Р МЭК 61191-1. Рекомендуется применение безотмывочных флюсов типа L0 или M0 в соответствии с ГОСТ Р 59681. Монтаж корпусов в аппаратуру производить, используя метод при котором распайку пайки. площадок на плату проводят без дополнительного механического крепления: наносят паяльную пасту; - пайку проводят оплавлением паяльной пасты, режим пайки в соответствии рекомендованным производителем паяльной термопрофилем; - состав паяльной пасты (рекомендуемый) оловянно-свинцовая с температурой плавления – не более 183 °C.

Служба технической поддержки:

Телефон: +7 (915) 364-43-16

e-mail: support@electron-engine.ru