rators // Int. J. Microwave and Microwave Wave CAE, 1997. vol.7. No 3. P. 241-249.

4. Черкашин М.В., Ф.И. Шеерман, Бабак Л.И. Проектирование монолитного активного СВЧ фильтра на основе преобразования моделей пассивных элементов // Междунар. науч.-практ. конф. «Электронные средства и системы управления». Томск: ТУСУР, 2004. Ч. 1. С. 55–60.

5. Бабак Л.И. Синтез и оптимизация монолитных интегральных СВЧ-устройств схем на основе преобразования моделей пассивных элементов // Междунар. науч.практ. конф. «Электронные средства и системы управления». Томск: ТУСУР, 2004. Ч. 1. С. 66–70.

6. Шеерман Ф.И., Бабак Л.И., Зайцев Д.А. LOCUS-MMIC – интегрированная среда «визуального» проектирования монолитных корректирующих и согласующих цепей // Наст. сб.

7. Бабак Л.И. Проектирование СВЧ-преобразователей иммитанса на основе декомпозиционного подхода // Междунар. науч.-практ. конф. «Электронные средства и системы управления». Томск: ТУСУР, 2005. Ч. 2. С. 97–101.

## ПРОЕКТИРОВАНИЕ ДВУХКАСКАДНОГО МАЛОШУМЯЩЕГО УСИЛИТЕЛЯ ДИАПАЗОНА 3,4–4,2 ГГц НА ОСНОВЕ ДЕКОМПОЗИЦИОННОГО ПОДХОДА

## Ф.И. Шеерман, Л.И. Бабак

ТУСУР, г. Томск, e-mail: babak@post.tomica.ru

**Введение.** В статье на примере двухкаскадного малошумящего усилителя (МШУ) рассматривается применение методики проектирования многокаскадных СВЧ-усилителей с реактивными согласующими цепями (СЦ), основанной на декомпозиционном методе синтеза [1].

Усилитель в диапазоне частот f = 3,4-4,2 ГГц должен обеспечить следующие характеристики: коэффициент усиления  $G \ge 20$  дБ; неравномерность АЧХ  $\Delta G = \pm 1$  дБ; коэффициент шума  $F \le 1,1$  дБ; коэффициенты отражения на входе и выходе  $m_1 \le 0,33$ ,  $m_2 \le 0,33$ ; коэффициент устойчивости  $k \ge 1$  во всей полосе частот. В качестве активных элементов (АЭ) используем полевой GaAs транзистор AP344A2. На частоте 4,2 ГГц он обладает минимальным коэффициентом шума 0,9 дБ и соответствующим коэффициентом усиления  $G_{ass} = 11,5$  дБ. Следовательно, усилитель должен содержать два каскада. Структурная схема усилителя показана на рис. 1.



Рис. 1. Структурная схема двухкаскадного усилителя с СЦ

Формулирование требований к каскадам. Коэффициент усиления поделим поровну между каскадами:  $10 \text{ дБ} \le G^{(1)} \le 11 \text{ дБ}$ ,  $10 \text{ дБ} \le G^{(2)} \le 11 \text{ дБ}$ . Поскольку от всего усилителя требуется коэффициент шума  $F \le 1,1 \text{ дБ} = 1,29$ , потребуем от первого каскада  $F^{(1)} \le 0,95 \text{ дБ} = 1,244$ . Тогда второй 150

каскад должен обеспечивать коэффициент шума не более [1]:  $F^{(2)} = G_A^{(1)}(F-F^{(1)})+1=10\cdot0,046+1=1,46$ , или 1,64 дБ. Остальные требования для усилительных каскадов в полосе пропускания представлены в табл. 1.

Проектирование межкаскадной цепи. Исходя из требований (табл. 1), с помощью программы REGION [2] получим полные области до-

Таблица 1

| Требования к усилительным каскадам |                            |           |            |         |         |  |
|------------------------------------|----------------------------|-----------|------------|---------|---------|--|
| Характе-                           | <i>G</i> <sup>-</sup> , дБ | $G^+$ .дБ | $F^+$ , дБ | $m_1^+$ | $m_2^+$ |  |
| ристики                            | ,,,,                       | ,, ,      | ,,,,       | 1       | 2       |  |
| 1-й каскад                         | 10                         | 11        | 0,95       | 0,33    | 1       |  |
| 2-й каскад                         | 10                         | 11        | 1,64       | 1       | 0,33    |  |
|                                    |                            |           |            |         |         |  |

пустимых значений (ОДЗ) на комплексных плоскостях коэффициентов отражения  $\Gamma_{S}^{(l)}$  и  $\Gamma_{L}^{(l)}$  (l = 1, 2) для каждого каскада. В первом каскаде в цепь истока была добавлена ин-

дуктивность величиной 0,25 нГн для совмещения требований по шуму и согласованию на входе. На рис. 2 и 3 показаны ОДЗ для частот рабочего диапазона 3,4; 3,8 и 4,2 ГГц, а также области устойчивости для частот 0,5; 7 и 11 ГГц.



Рис. 2. Выбор нагрузок усилительных каскадов:  $a - \widetilde{\Gamma}_{S}^{(1)}$ ;  $\delta - \widetilde{\Gamma}_{L}^{(2)}$ 

Теперь необходимо выбрать значения нагрузок усилительных каскадов  $\widetilde{\Gamma}_{S}^{(1)}(\omega_{k})$  и  $\widetilde{\Gamma}_{L}^{(2)}(\omega_{k})$  на указанных частотах  $\omega_{k}(k = \overline{1, M})$  [1]. Для первого каскада выберем значения  $\widetilde{\Gamma}_{S}^{(1)}(\omega_{k})$  из условия минимума коэффициента шума  $\widetilde{\Gamma}_{S}^{(1)}(\omega_{k}) = \Gamma_{Sn}^{(1)}(\omega_{k})$  и затем слегка подкорректируем годограф таким образом, чтобы он попадал в полные ОДЗ на плоскости  $\Gamma_{S}^{(1)}$  (рис. 2, *a*). Для второго каскада возьмем значения  $\widetilde{\Gamma}_{L}^{(2)}(\omega_{k})$ , равные комплексно-сопряженной величине параметра  $s_{22}$  АЭ<sub>2</sub> (рис. 2, *b*).

Для выбранных  $\widetilde{\Gamma}_{S}^{(1)}(\omega_{k})$  и  $\widetilde{\Gamma}_{L}^{(2)}(\omega_{k})$  вычислим значения нагрузок межкаскадной цепи  $\widetilde{\Gamma}_{out}^{(1)}(\omega_{k})$  и  $\widetilde{\Gamma}_{in}^{(2)}(\omega_{k})$ ,  $k = \overline{1, M}$  [1]. Синтез СЦ<sub>2</sub> при известных нагрузках проводим по полным ОДЗ и областям устойчивости на плоскостях  $\Gamma_{L}^{(1)}$  и  $\Gamma_{S}^{(2)}$  при помощи программы синтеза СЦ GENESYN [3], основанной на генетических алгоритмах:  $\Gamma_L^{(1)}(\omega_k) \in \overline{E}_L^{(1)}(\omega_k)$ ,  $\Gamma_S^{(2)}(\omega_k) \in \overline{E}_S^{(2)}(\omega_k)$ ,  $k = \overline{1, M}$  (рис. 3).



Рис. 3. Полные ОДЗ и годографы коэффициентов отражения межкаскадной СЦ: a – на плоскости  $\Gamma_L^{(1)}$ ;  $\delta$  – на плоскости  $\Gamma_S^{(2)}$ 

На рис. 4 представлены результаты синтеза межкаскадной СЦ. Видно, что на всех частотах годографы входного и выходного коэффициентов отражения СЦ попали в соответствующие ОДЗ.



Рис. 4. ОДЗ и годографы коэффициентов отражения: a – входной СЦ на плоскости  $\Gamma_S^{(1)}$ ;  $\delta$  – выходной СЦ на плоскости  $\Gamma_L^{(2)}$ 

Проектирование входной и выходной СЦ. Рассчитаем *S*-параметры соединения  $A \Im_1 - C \amalg_2 - A \Im_2$  и построим полные ОДЗ для этого соединения на плоскостях  $\Gamma_S^{(1)}$  и  $\Gamma_L^{(2)}$ . Для того чтобы ОДЗ существовали, потребовалось скорректировать требования к коэффициенту усиления усилителя следующим образом: 22,5 дБ  $\leq G \leq 24$  дБ.

По полученным при таких условиях полным ОДЗ на плоскости  $\Gamma_S^{(1)}$  синтезируем с помощью программы GENESYN входную цепь (рис. 4, *a*). Затем строим «односторонне нагруженные» ОДЗ на плоскости  $\Gamma_L^{(2)}$  при подключенной входной СЦ<sub>1</sub> и синтезируем выходную СЦ<sub>3</sub> (рис. 4, *б*).

Полученная схема всего усилителя показана на рис. 5. На рис. 6 пунктиром представлены его частотные характеристики. На частоте 4 ГГц модуль коэффициента отражения  $|s_{22}|$  оказался больше заданного, так как для данной частоты ОДЗ не строились. После параметрической оптимизации усилителя удалось выполнить все поставленные требования (рис. 6, сплошные линии). В табл. 2 приведены значения элементов до и после оптимизации.



двухкаскадного МШУ с реактивными СЦ



Таблица 2 Значения элементов усилителя

| Sha tenna sitementob yenintena |          |             |  |  |
|--------------------------------|----------|-------------|--|--|
| Элемент                        | До опти- | После опти- |  |  |
| Shemenn                        | мизации  | мизации     |  |  |
| L1                             | 2,29 нГн | 2,365 нГн   |  |  |
| L2                             | 5,71 нГн | 5, 067 нГн  |  |  |
| L3                             | 0,25 нГн | 0,25 нГн    |  |  |
| L4                             | 4,88 нГн | 4,562 нГн   |  |  |
| L5                             | 2,45 нГн | 2,16 нГн    |  |  |
| L6                             | 2,7 нГн  | 2,032 нГн   |  |  |
| L7                             | 1,48 нГн | 1,072 нГн   |  |  |
| C1                             | 0,852 пФ | 0,869 пФ    |  |  |
| C2                             | 1,58 пФ  | 1,149 пФ    |  |  |

Усилитель является безусловно устойчивым, это достигнуто благодаря синтезу межкаскадной СЦ с учетом областей устойчивости [1].

При этом в схеме усилителя не использовались диссипативные элементы, которые ухудшают коэффициент шума и уменьшают усиление. Выравнивание коэффициента усиления в рабочей полосе частот происходит за счет переотражений в межкаскадной СЦ.

## ЛИТЕРАТУРА

1. Бабак Л.И., Шеерман Ф.И. Методика проектирования многокаскадных СВЧ транзисторных усилителей с реактивными согласующими цепями // Наст. сб.

2. Бабак Л.И., Черкашин М.В., Поляков А.Ю. и др. Программы «визуального» проектирования транзисторных СВЧ усилителей // Междунар. науч.-техн. конф. «СВЧ-техника и телекоммуникационные технологии». Севастополь: Вебер, 2005. Т. 2. С. 425–426.

3. Шеерман Ф.И., Бабак Л.И., Вьюшков В.А., Зайцев Д.А. Генетический синтез согласующих цепей по областям допустимых значений иммитанса // Современные проблемы радиоэлектроники: Сб. тр. Всерос. научн.-техн. конф. Красноярск: Изд-во КГТУ, 2007. С. 241–244.