- rators // Int. J. Microwave and Microwave Wave CAE, 1997. vol.7. No 3. P. 241–249.
- 4. Черкашин М.В., Ф.И. Шеерман, Бабак Л.И. Проектирование монолитного активного СВЧ фильтра на основе преобразования моделей пассивных элементов // Междунар. науч.-практ. конф. «Электронные средства и системы управления». Томск: ТУСУР, 2004. Ч. 1. С. 55–60.
- 5. Бабак Л.И. Синтез и оптимизация монолитных интегральных СВЧ-устройств схем на основе преобразования моделей пассивных элементов // Междунар. науч.практ. конф. «Электронные средства и системы управления». Томск: ТУСУР, 2004. Ч. 1. С. 66–70.
- 6. Шеерман Ф.И., Бабак Л.И., Зайцев Д.А. LOCUS-MMIC интегрированная среда «визуального» проектирования монолитных корректирующих и согласующих цепей // Наст. сб.
- $7.\, \mathit{Бабак} \ \mathit{Л.И.}$ Проектирование СВЧ-преобразователей иммитанса на основе декомпозиционного подхода // Междунар. науч.-практ. конф. «Электронные средства и системы управления». Томск: ТУСУР, 2005. Ч. 2. С. 97–101.

ПРОЕКТИРОВАНИЕ ДВУХКАСКАДНОГО МАЛОШУМЯЩЕГО УСИЛИТЕЛЯ ДИАПАЗОНА 3,4–4,2 ГГц НА ОСНОВЕ ДЕКОМПОЗИЦИОННОГО ПОДХОДА

Ф.И. Шеерман, Л.И. Бабак

ТУСУР, г. Томск, e-mail: babak@post.tomica.ru

Введение. В статье на примере двухкаскадного малошумящего усилителя (МШУ) рассматривается применение методики проектирования много-каскадных СВЧ-усилителей с реактивными согласующими цепями (СЦ), основанной на декомпозиционном методе синтеза [1].

Усилитель в диапазоне частот f=3,4—4,2 ГГц должен обеспечить следующие характеристики: коэффициент усиления $G\ge20$ дБ; неравномерность АЧХ $\Delta G=\pm 1$ дБ; коэффициент шума $F\le1,1$ дБ; коэффициенты отражения на входе и выходе $m_1\le0,33,\ m_2\le0,33$; коэффициент устойчивости $k\ge1$ во всей полосе частот. В качестве активных элементов (АЭ) используем полевой GaAs транзистор AP344A2. На частоте 4,2 ГГц он обладает минимальным коэффициентом шума 0,9 дБ и соответствующим коэффициентом усиления $G_{ass}=11,5$ дБ. Следовательно, усилитель должен содержать два каскада. Структурная схема усилителя показана на рис. 1.

Рис. 1. Структурная схема двухкаскадного усилителя с СЦ

Формулирование требований к каскадам. Коэффициент усиления поделим поровну между каскадами: $10~{\rm дБ} \le G^{(1)} \le 11~{\rm дБ},~10~{\rm дБ} \le G^{(2)} \le 11~{\rm дБ}.$ Поскольку от всего усилителя требуется коэффициент шума $F \le 1,1~{\rm дБ} = 1,29,$ потребуем от первого каскада $F^{(1)} \le 0,95~{\rm дБ} = 1,244.$ Тогда второй

каскад должен обеспечивать коэффициент шума не более [1]: $F^{(2)} = G_A^{(1)}(F-F^{(1)})+1=10\cdot0,046+1=1,46$, или 1,64 дБ. Остальные требования для усилительных каскадов в полосе пропускания представлены в табл. 1.

Проектирование межкаскадной цепи. Исходя из требований (табл. 1), с помощью программы REGION [2] получим полные области до-

Таблица 1 Гребования к усилительным каскадам

треоования к усилительным каскадам					
Характе-	G^- , дБ	G^+ ,дБ	F^{+} , дБ	m_1^+	m_2^+
ристики	,,,	, ,	,,,	1	2
1-й каскад	10	11	0,95	0,33	1
2-й каскад	10	11	1,64	1	0,33

пустимых значений (ОДЗ) на комплексных плоскостях коэффициентов отражения $\Gamma_S^{(I)}$ и $\Gamma_L^{(I)}$ (I=1,2) для каждого каскада. В первом каскаде в цепь истока была добавлена ин-

дуктивность величиной 0,25 нГн для совмещения требований по шуму и согласованию на входе. На рис. 2 и 3 показаны ОДЗ для частот рабочего диапазона 3,4; 3,8 и 4,2 ГГц, а также области устойчивости для частот 0,5; 7 и 11 ГГц.

Рис. 2. Выбор нагрузок усилительных каскадов: $a-\widetilde{\Gamma}_S^{(1)}$; $\delta-\widetilde{\Gamma}_L^{(2)}$

Теперь необходимо выбрать значения нагрузок усилительных каскадов $\widetilde{\Gamma}_S^{(1)}(\omega_k)$ и $\widetilde{\Gamma}_L^{(2)}(\omega_k)$ на указанных частотах $\omega_k(k=\overline{1,M})$ [1]. Для первого каскада выберем значения $\widetilde{\Gamma}_S^{(1)}(\omega_k)$ из условия минимума коэффициента шума $\widetilde{\Gamma}_S^{(1)}(\omega_k) = \Gamma_{Sn}^{(1)}(\omega_k)$ и затем слегка подкорректируем годограф таким образом, чтобы он попадал в полные ОДЗ на плоскости $\Gamma_S^{(1)}$ (рис. 2, a). Для второго каскада возьмем значения $\widetilde{\Gamma}_L^{(2)}(\omega_k)$, равные комплексно-сопряженной величине параметра s_{22} АЭ $_2$ (рис. 2, a).

Для выбранных $\widetilde{\Gamma}_S^{(1)}(\omega_k)$ и $\widetilde{\Gamma}_L^{(2)}(\omega_k)$ вычислим значения нагрузок межкаскадной цепи $\widetilde{\Gamma}_{out}^{(1)}(\omega_k)$ и $\widetilde{\Gamma}_{in}^{(2)}(\omega_k)$, $k=\overline{1,M}$ [1]. Синтез СЦ $_2$ при известных нагрузках проводим по полным ОДЗ и областям устойчивости на плоскостях $\Gamma_L^{(1)}$ и $\Gamma_S^{(2)}$ при помощи программы синтеза СЦ GENESYN [3], основанной на

генетических алгоритмах: $\Gamma_L^{(1)}(\omega_k) \in \overline{E}_L^{(1)}(\omega_k)$, $\Gamma_S^{(2)}(\omega_k) \in \overline{E}_S^{(2)}(\omega_k)$, $k = \overline{1,M}$ (рис. 3).

Рис. 3. Полные ОДЗ и годографы коэффициентов отражения межкаскадной СЦ: $a-\text{на плоскости }\Gamma_L^{(1)}\,;\, \textit{б}-\text{на плоскости }\Gamma_S^{(2)}$

На рис. 4 представлены результаты синтеза межкаскадной СЦ. Видно, что на всех частотах годографы входного и выходного коэффициентов отражения СЦ попали в соответствующие ОДЗ.

Рис. 4. ОДЗ и годографы коэффициентов отражения: a – входной СЦ на плоскости $\Gamma_S^{(1)}$; δ – выходной СЦ на плоскости $\Gamma_L^{(2)}$

Проектирование входной и выходной СЦ. Рассчитаем *S*-параметры соединения $A \ni_1 - C \coprod_2 - A \ni_2$ и построим полные ОДЗ для этого соединения на плоскостях $\Gamma_S^{(1)}$ и $\Gamma_L^{(2)}$. Для того чтобы ОДЗ существовали, потребовалось скорректировать требования к коэффициенту усиления усилителя следующим образом: 22,5 дБ $\leq G \leq 24$ дБ.

По полученным при таких условиях полным ОДЗ на плоскости $\Gamma_S^{(1)}$ синтезируем с помощью программы GENESYN входную цепь (рис. 4, a). Затем строим «односторонне нагруженные» ОДЗ на плоскости $\Gamma_L^{(2)}$ при подключенной входной СЦ₁ и синтезируем выходную СЦ₃ (рис. 4, δ).

Полученная схема всего усилителя показана на рис. 5. На рис. 6 пунктиром представлены его частотные характеристики. На частоте 4 $\Gamma\Gamma$ ц модуль коэффициента отражения $|s_{22}|$ оказался больше заданного, так как для данной частоты ОДЗ не строились. После параметрической оптимизации усилителя удалось выполнить все поставленные требования (рис. 6, сплошные линии). В табл. 2 приведены значения элементов до и после оптимизации.

Таблица 2 Значения элементов усилителя

Shu lehin shemenlob yendinledin				
Элемент	До опти-	После опти-		
371CMCH1	мизации	мизации		
L1	2,29 нГн	2,365 нГн		
L2	5,71 нГн	5, 067 нГн		
L3	0,25 нГн	0,25 нГн		
L4	4,88 нГн	4,562 нГн		
L5	2,45 нГн	2,16 нГн		
L6	2,7 нГн	2,032 нГн		
L7	1,48 нГн	1,072 нГн		
C1	0,852 пФ	0,869 пФ		
C2	1,58 пФ	1,149 пФ		

Усилитель является безусловно устойчивым, это достигнуто благодаря синтезу межкаскадной СЦ с учетом областей устойчивости [1].

При этом в схеме усилителя не использовались диссипативные элементы, которые ухудшают коэффициент шума и уменьшают усиление. Выравнивание коэффициента усиления в рабочей полосе частот происходит за счет переотражений в межкаскадной СЦ.

ЛИТЕРАТУРА

- 1. Бабак Л.И., Шеерман Ф.И. Методика проектирования многокаскадных СВЧ транзисторных усилителей с реактивными согласующими цепями // Наст. сб.
- 2. Бабак Л.И., Черкашин М.В., Поляков А.Ю. и др. Программы «визуального» проектирования транзисторных СВЧ усилителей // Междунар. науч.-техн. конф. «СВЧ-техника и телекоммуникационные технологии». Севастополь: Вебер, 2005. Т. 2. С. 425–426.
- 3. Шеерман Ф.И., Бабак Л.И., Вьюшков В.А., Зайцев Д.А. Генетический синтез согласующих цепей по областям допустимых значений иммитанса // Современные проблемы радиоэлектроники: Сб. тр. Всерос. научн.-техн. конф. Красноярск: Изд-во КГТУ, 2007. С. 241-244.